“En-caching” the RAN – the AI way

 


 

 

RAN caching is an intuitive use-case for AI. Our report “AI and RAN – How fast will they run?”, places caching third in the list of top AI applications in the RAN.

There is seriously nothing new about caching. In computing analogy, caching is as old as computing itself. The reason caching and RAN are being uttered in the same breath is primarily MEC. MEC is a practical concept. MEC attempts to leverage the distributed nature of the RAN infrastructure in response to the explosion in mobile data generation and consumption.

Caching looks at practically every point in the RAN as a possible caching destination – it can be base stations, or RRHs, or BBUs, or femtocells, or macrocells and even user equipment.

The caching dilemma is a multipronged – what to cache, where to cache and how much to cache.

In an ideal world, one could have access to infinite storage and processing capacity interconnected with infinite throughput at zero latency. In the real world however, each of these aspects – storage, processing power, throughput and latency are finite and real.

If the content is moved closer to the edge, then the latency can be marginally reduced, but the pressure on the backhaul for replications and updates will be high.

Conversely, centralizing the content adds to the latency due to longer access paths.

Conventional solutions use a magical keyword – optimize.

Optimization has its comfort zones  – the traffic patterns are predictable, spatial diversity is static, the number of parameters to be considered is finite. This is no longer the case in present day networks.

One has to expect that optimization is a loaded, and flexible word. It has rather glibly placed itself in the pantheon of ‘AI-accepted’ epithets.

‘Real’ 5G expects its RAN to be dynamic beast, continually morphing in response to user behavior, device type, and network conditions. Add content temporal and social features, like views and likes to that mix. 5G RAN caching needs to be commensurately supple.

Let us sample a few of the very specific suppleness demands on caching:

  • Cached content can exist in multiple locations. Ensuring that all caches have consistent and updated data is crucial. Most data these days is mutable. Cache invalidation strategies are required to maintain data integrity.
  • Network slicing poses its own challenges - optimal caching strategies are needed for each slice. Resources should not be wasted on redundant caches
  • Cached data, being closer to the user and outside the traditionally more secure core network, can be more vulnerable to attacks.

It is in the crosshairs of these questions that AI, ML and DL provide multiple pathways of salvation.

Let us see how.

AI algorithms, trained on historical user data, can forecast which content or data a user is likely to request next. In a 5G network, content popularity can change rapidly. Neural networks, trained on vast datasets of user behavior, can predict shifts in content popularity. For instance, during a significant global event, a particular news clip might see a surge in demand. Neural networks can forecast these spikes, ensuring that such content is cached in advance, catering to the increased demand.

Not all users have the same data needs. Deep Learning, especially clustering algorithms, can group users based on their data access patterns. For example, users in a particular location might frequently access specific types of content, such as local news or regional shows. A DL model can identify these clusters and ensure that relevant content is cached closer to these user groups, enhancing their experience.

The dynamic nature of 5G RAN, with varying user densities and data demands, necessitates adaptive cache allocation. Reinforcement Learning (RL), where algorithms learn optimal strategies through interaction with the environment, can be employed. An RL agent, by continuously assessing user demands and cache hit rates, can adaptively allocate cache resources, ensuring that high-demand data is always readily available.

Let us look at convolutional neural network (CNN). CNNs are known to be inspired by the visual cortex of animals. Just like the cortex, CNNs excel at learning learn spatial hierarchies of features from input data. CNNs do this automatically, eliminating the need for manual feature engineering. As a corollary, CNNs are computationally intensive and require significant amounts of data for training. When connected in parallel, CNNs too can be used to pinpoint caching locations and registers.

Cache storage is finite. Deciding which data to retain and which to replace is crucial. Traditional caching mechanisms, like Least Recently Used (LRU), might not always be optimal for dynamic 5G environments. ML can optimize cache replacement. By analyzing patterns in data access frequencies, user mobility, and network conditions, ML algorithms can determine the most relevant data to cache, ensuring optimal utilization of cache storage.

Do you have any more ideas that you can share about AI in RAN caching? Do share with us.

 

Published on: February 25, 2024

 
Kaustubha Parkhi
Principal Analyst, Insight Research
 

 

RELATED BLOGS

Revenue shares of the key end-applications for AI in the RAN.

AI and its applications in the RAN

      Excerpted from our report AI and RAN – How fast will they run? The above figure charts the progression of the revenue shares of the key end-applications for AI in the RAN. Insight Research identifies the following key end-applications for AI in the RAN: Traffic Optimization Caching Energy management Coding The impression … Continue reading AI and its applications in the RAN
Share of Addressable Market in Traffic Optimization End-Application Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028

What Drives AI in Network Optimization Globally?

      Let us come straight to the point. RAN shipments data recorded globally by several sources reveals the CAGR to be in single digits. Insight Research, on the other hand, pegs the growth for addressable market for AI in RAN in healthy double-digits. What explains the apparent dichotomy? Well, the answer is very … Continue reading What Drives AI in Network Optimization Globally?

Microservices – The wind beneath the CNF wings

        In my last post, I discussed the pitfalls of microservices, which power CNFs. In this post, I will present the other side of the story. We know that microservices dissect individual CNFs into a mesh of interdependent services that can be containerized independently of each other. I would like you to … Continue reading Microservices – The wind beneath the CNF wings

Select your currency
USD United States (US) dollar