+91 98801 91752 , +1 408 757 0054
marketing@insight-corp.com
  • FB
  • Twitter
  • LinkedIn
  • Youtube
The Insight Research Corporation Logo
Cart Sign In
  • Home
  • Company
    • About Insight Research
    • Team
    • News/Press
    • Career
    • Social Media
    • Contact Us
  • Reports
    • Off-the shelf reports
    • Customize your report
    • Become a member
  • services
    • Telecommunication Research
    • 5G Technology: An Introduction
    • Telecom Competitive Swot Analysis
    • Network Functions Virtualization Research
    • The Importance of Telecom Industry Financial Analysis
    • Sdn Research
  • Resources
    • BLOGS
    • Webinars & Videos
  • Clients
    • Our Clients
    • Testimonials
  • Home
  • Company
    • About Insight Research
    • Team
    • News/Press
    • Career
    • Social Media
    • Contact Us
  • Reports
    • Off-the shelf reports
    • Customize your report
    • Become a member
  • services
    • Telecommunication Research
    • 5G Technology: An Introduction
    • Telecom Competitive Swot Analysis
    • Network Functions Virtualization Research
    • The Importance of Telecom Industry Financial Analysis
    • Sdn Research
  • Resources
    • BLOGS
    • Webinars & Videos
  • Clients
    • Our Clients
    • Testimonials
Home / Broadband / AI and RAN – How fast will they run?
AI and RAN - How fast will they run?

AI and RAN – How fast will they run?

$4,500.00 – $6,000.00

The INR price is inclusive of GST.

  • Single User License
  • 6-Seat License
  • Unlimited Corporate License
Clear
SKU: N/A Categories: Broadband, Cloud, Mobility, Open Source, OSS BSS

Download Executive Summary

"*" indicates required fields

This field is hidden when viewing the form
This field is for validation purposes and should be left unchanged.
  • Description
  • Highlights
  • Scope
  • Table of Contents
  • Figures & Tables
  • Videos

Description

First things first! Is AI present at the cutting edge of the RAN? The answer is a resounding yes. AI is present in the RAN now. This is the present tense. Fact is, AI and RAN have been waiting to embrace each other for several years. Their stars were not favorably aligned thus far. What changed then?

For starters, RAN started getting disaggregated. From the monolithic structure impervious to ‘outside’ interventions of yesteryears, the present-day RAN likes to present itself as a loosely-coupled, nimble and welcoming outfit.

Is it really like that? Well, the jury is out on that. It cannot be denied however, that it is trying to get there. Naysayers may argue that there are certain inherent contradictions in this journey. Can’t deny that. The RAN ‘establishment’ is suspecting of outsiders. But hey, let’s park this worry for a bit, and look at the brighter side.

The entry of AI in the RAN architecture can surely be counted in the brighter side of things. Insight Research highlights the contours of this foray and puts numbers on the addressable market size for AI in RAN.

Highlights

As the report features a thorough breakdown of the market by application, region and telephony generations, it provides telling quantitative insights.

  • The addressable market for AI in RAN will grow by an impressive 45% annually during 2023-2028
  • The addressable market for AI in 5G RAN will grow faster than earlier telephony generations
  • The APAC region will be the largest market for AI in RAN caching applications

Scope

The chapter “AI/ML/DL -Key Concepts Explainer” lays down the basic ground for what constitutes AI, ML and DL. While these concepts are covered extensively in contemporary times, it is important to unambiguously define them to put into perspective, their role in the cellular mobile network architecture. However, the crux of the chapter is the explanation of the several use-cases that this report sizes and forecasts the market fore. This chapter enunciates in appropriate detail the applications of AI, ML and DL in the operations of 4G and 5G cores.

The chapter “Virtualization of the RAN” places virtualization in the realms of the RAN network function. In the context of AI, if there is any development that has made RAN more ‘amenable’ for AI adoption, it is its virtualization. Initiatives such as OpenRAN are a direct result of the ground laid by SDN and NFV technologies. The chapter traces the evolution of the RAN and its progressive virtualization

The chapter “End-applications for AI in the RAN” details the import of AI to the RAN. It dives into the role played by O-RAN in providing a pathway for deeper integration with AI. The chapter then includes the principal RAN use-cases: traffic optimization, caching, energy management and coding; where AI is providing or likely to provide seminal contributions.

The chapter “Vendor Initiatives for AI in the RAN” identifies, covers and analyzes key vendors and their solutions related to AI in the RAN. More importantly, the chapter uncovers the seminal impact that AI is engineering on the RAN vendor landscape.

The chapter “Telco Initiatives for AI in the RAN”  details the approaches and initiatives of leading telcos in context of AI in the RAN. It should be remembered that it was the telcos that championed the NFV movement. A fallout of this movement is the gradual induction of AI in the RAN architecture. The RIC through the O-RAN initiative has been a major step in that initiative. This chapter chronicles the telco initiatives and their outcomes.

The chapter “Quantitative Analysis and Forecasts” presents the quantitative forecast of the market for AI in cellular mobile RANs. The market is broken down based on several different criteria; most notably the applications themselves. Other sub-criteria include mobile telephony generations and geographical regions.

Table of Contents

  1. 1        Executive Summary

    1.1      Key observations

    1.2      Quantitative Forecast Taxonomy

    1.3      Report Organization

    2        AI/ML/DL – Key Concepts Explainer

    2.1      Artificial Intelligence

    2.2      Machine Learning (ML)

    2.2.1   Supervised Machine Learning

    2.2.2   Unsupervised Machine Learning

    2.2.3   Reinforced Machine Learning

    2.2.4   K-Nearest Neighbor

    2.3      Deep Learning Neural Network (DLNN)

    2.4      Noteworthy ML and DL Algorithms

    2.4.1   Anomaly Detection

    2.4.2   Artificial Neural Networks (ANN)

    2.4.3   Bagged Trees

    2.4.4   CART and SVM Algorithms

    2.4.5   Clustering

    2.4.6   Conditional Variational Autoencoder

    2.4.7   Convolutional Neural Network

    2.4.8   Correlation and Clustering

    2.4.9   Evolutionary Algorithms and Distributed Learning

    2.4.10 Feed Forward Neural Network

    2.4.11 Graph Neural Networks

    2.4.12 Hybrid Cognitive Engine (HCE)

    2.4.13 Kalman Filter

    2.4.14 Markov Decision Processes

    2.4.15 Multilayer Perceptron

    2.4.16 Naïve Bayes

    2.4.17 Radial Basis Function

    2.4.18 Random Forest

    2.4.19 Recurrent Neural Network

    2.4.20 Reinforced Neural Network

    2.4.21 SOM Algorithm

    2.4.22 Sparse Bayesian Learning

    3        Virtualization of the RAN

    3.1      The RAN and its Evolution

    3.1.1   Closer Look at E-UTRAN

    3.1.2   5G- NR, NSA and SA

    3.1.3   MEC

    3.1.4   The Rigid CPRI

    3.2      The Progression of the RAN to the vRAN

    3.3      How VM-based and Container-based vRANs Compare?

    3.3.1   NFV architecture

    3.3.2   The Need for Containers

    3.3.3   Microservices

    3.3.4   Container Morphology

    3.3.5   Container Deployment Methodologies

    3.3.6   Stateful and Stateless Containers

    3.3.7   Advantage Containers

    3.3.8   Challenges Confronting Containers

    3.4      RAN Virtualization – A Story of Alliances

    3.4.1   O-RAN Architecture Overview

    3.4.2   History of O-RAN

    3.4.3   Workgroups of O-RAN

    3.4.4   Open vRAN (O-vRAN)

    3.4.5   Telecom Infra Project (TIP) OpenRAN

    4        End-applications for AI in the RAN

    4.1      O-RAN and AI

    4.1.1   Introduction

    4.1.2   RIC, xApps and rApps

    4.1.3   WG2 and ML

    4.2      AI Use-Case – Traffic Optimization

    4.2.1   Background

    4.2.2   Methodologies and Challenges

    4.2.3   AI-based Approaches

    4.3      AI Use-Case – Caching

    4.3.1   Background

    4.3.2   Methodologies and Challenges

    4.3.3   AI-based Approaches

    4.4      AI Use-Case – Energy Management

    4.4.1   Background

    4.4.2   Methodologies and Challenges

    4.4.3   AI-based Approaches

    4.5      AI Use-Case – Coding

    4.5.2   AI-based Approaches

    5        Vendor Initiatives for AI in the RAN

    5.1      Introduction

    5.2      Salient Observations

    5.3      Company and Organization Summary

    5.4      Aira Channel Prediction xApp

    5.5      Aira Dynamic Radio Network Management rApp

    5.6      AirHop Auptim

    5.7      Aspire Anomaly Detection rApp

    5.8      Cisco Ultra Traffic Optimization

    5.9      Capgemini RIC

    5.1      Cohere MU-MIMO Scheduler

    5.11    DeepSig OmniSig

    5.12    Deepsig OmniPHY

    5.13    Ericsson Radio System

    5.14    Ericsson RIC

    5.15    Fujitsu Open RAN Compliant RUs

    5.16    HCL iDES rApp

    5.17    Huawei PowerStar

    5.18    Juniper RIC/Rakuten Symphony Symworld

    5.19    Mavenir mMIMO 64TRX

    5.20    Mavenir RIC

    5.21    Net AI xUPscaler Traffic Predictor xApp

    5.22    Nokia RAN Intelligent Controller

    5.23    Nokia AVA

    5.24    Nokia ReefShark Soc

    5.25    Nvidia AI-on-5G platform

    5.26    Opanga Networks

    5.27    P.I. Works Intelligent PCI Collision and Confusion Detection rApp

    5.28    Qualcomm RIC

    5.29    Qualcomm Cellwize CHIME

    5.30    Qualcomm Traffic Management Solutions

    5.31    Rimedo Policy-controlled Traffic Steering xApp

    5.32    Samsung Network Slice Manager

    5.33    ZTE PowerPilot

    5.34    VMware RIC

    6        Telco Initiatives for AI in the RAN

    6.1      Introduction

    6.2      Salient Observations

    6.3      Company and Organization Summary

    6.4      AT&T Inc

    6.5      Axiata Group Berhad

    6.6      Bharti Airtel

    6.7      China Mobile

    6.8      China Telecom

    6.9      China Unicom

    6.10    CK Hutchison Holdings

    6.11    Deutsche Telekom

    6.12    Etisalat

    6.13    Globe Telecom Inc

    6.14    NTT DoCoMo

    6.15    MTN Group

    6.16    Ooredoo

    6.17    Orange

    6.18    PLDT Inc

    6.19    Rakuten Mobile

    6.20    Reliance Jio

    6.21    Saudi Telecom Company

    6.22    Singtel

    6.23    SK Telecom

    6.24    Softbank

    6.25    Telefonica

    6.26    Telenor

    6.27    Telkomsel

    6.28    T-Mobile US

    6.29    Verizon

    6.30    Viettel Group

    6.31    Vodafone

    7        Quantitative Analysis and Forecasts

    7.1      Research Methodology

    7.2      Forecast Taxonomy

    7.3      Global Market

    7.3.1   Overall Market

    7.3.2   Mobile Telephony Generations

    7.3.3   Geographical Regions

    7.4      Traffic Optimization

    7.4.1   Overall Market

    7.4.2   Mobile Telephony Generations

    7.4.3   Geographical Regions

    7.5      Caching

    7.5.1   Overall Market

    7.5.2   Mobile Telephony Generations

    7.5.3   Geographical Regions

    7.6      Energy Management

    7.6.1   Overall Market

    7.6.2   Mobile Telephony Generations

    7.6.3   Geographical Regions

    7.7      Coding

    7.7.1   Overall Market

    7.7.2   Mobile Telephony Generations

    7.7.3   Geographical Regions

Figures & Tables

Figure 1-1: Progression of revenue shares of AI end-applications in the RAN

Figure 3-1: VNF versus CNF Stacks

Figure 3-2: O-RAN High-Level Architecture

Figure 3-3: O-RAN High-Level Architecture

Figure 3-4: Architecture of vRAN Base Station as Visualized by TIP.

Figure 4-1: Reinforcement learning model training and actor locations per O-RAN WG2

Figure 4-2: AI/ML Workflow in the O-RAN RIC as proposed O-RAN WG2

Figure 4-3: AI/ML deployment scenarios

Table 5-1: AI in RAN Product and Solution Vendor Summary

Figure 5-1: The Aira channel detection xApp functional blocks

Figure 5-2: Modules of the Aspire Anomaly Detection rApp

Figure 5-3: OmniPHY Module Drop in Typical vRAN Stack Overview

Figure 5-4: Ericsson IAP

Figure 5-5: HCL iDES rApp Architecture

Figure 5-6: Working of the Net Ai xUPscaler

Figure 5-7: Nokia RIC programmability via AI/ML and Customized Applications

Figure 5-8: Timesharing the GPU in Nvidia Aerial A100

Figure 5-8: Rimedo TS xApp in the O-RAN architecture

Figure 5-9: Rimedo TS xApp in the VMware RIC

Figure 5-10: PowerPilot Solution Evolution

Table 6-1: AI in RAN Telco Profile Snapshot

Figure 7-1: AI in the RAN Market Forecast Taxonomy

Table 7-1: Addressable Market in Mobile RAN for AI and Related Technologies 2023-2028 ($ million)

Table 7-2: Addressable Market in Mobile RAN for AI and Related Technologies; by Mobile Telephony Generation 2023-2028 ($ million)

Figure 7-2: Share of Addressable Market in Mobile RAN for AI and Related Technologies; by Mobile Telephony Generation 2023-2028

Table 7-3: Addressable Market in Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028 ($ million)

Figure 7-3: Share of Addressable Market in Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028

Table 7-4: Addressable Market in Traffic Optimization End-Application in Mobile RAN for AI and Related Technologies 2023-2028 ($ million)

Table 7-5: Addressable Market in Traffic Optimization Application in Mobile RAN for AI and Related Technologies; by Mobile Telephony Generation 2023-2028 ($ million)

Figure 7-4: Share of Addressable Market in Traffic Optimization End-Application in Mobile RAN for AI and Related Technologies; by Mobile Telephony Generation 2023-2028

Table 7-6: Addressable Market in Traffic Optimization End-Application Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028 ($ million)

Figure 7-5: Share of Addressable Market in Traffic Optimization End-Application Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028

Table 7-7: Addressable Market in Caching End-Application in Mobile RAN for AI and Related Technologies 2023-2028 ($ million)

Table 7-8: Addressable Market in Caching End-Application in Mobile RAN for AI and Related Technologies; by Mobile Telephony Generation 2023-2028 ($ million)

Figure 7-6: Share of Addressable Market in Caching End-Application in Mobile RAN for AI and Related Technologies; by Mobile Telephony Generation 2023-2028

Table 7-9: Addressable Market in Caching End-Application in Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028 ($ million)

Figure 7-7: Share of Addressable Market in Caching End-Application in Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028

Table 7-10: Addressable Market in Energy Management End-Application in Mobile RAN for AI and Related Technologies 2023-2028 ($ million)

Table 7-11: Addressable Market in Energy Management End-Application in Mobile RAN for AI and Related Technologies; by Mobile Telephony Generation 2023-2028 ($ million)

Figure 7-8: Share of Addressable Market in Energy Management End-Application in Mobile RAN for AI and Related Technologies; by Mobile Telephony Generation 2023-2028

Table 7-12: Addressable Market in Energy Management End-Application in Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028 ($ million)

Figure 7-9: Share of Addressable Market in Energy Management End-Application in Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028

Table 7-13: Addressable Market in Coding End-Application in Mobile RAN for AI and Related Technologies 2023-2028 ($ million)

Table 7-14: Addressable Market in Coding End-Application in Mobile RAN for AI and Related Technologies; by Mobile Telephony Generation 2023-2028 ($ million)

Figure 7-10: Share of Addressable Market in Coding End-Application in Mobile RAN for AI and Related Technologies; by Mobile Telephony Generation 2023-2028

Table 7-15: Addressable Market in Coding End-Application in Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028 ($ million)

Figure 7-11: Share of Addressable Market in Coding End-Application in Mobile RAN for AI and Related Technologies; by Geographical Region 2023-2028

Related products

CNFs and VNFs in Cellular Telephony Packet Core: Pre and Post Covid19 Analysis

CNFs and VNFs in Cellular Telephony Packet Core: Pre and Post Covid19 Analysis

$3,500.00 – $6,000.00
Select options This product has multiple variants. The options may be chosen on the product page
The Lifecycle Services Orchestration (LSO) market - Cracking the telecom orchestrator market puzzle

The Lifecycle Services Orchestration (LSO) market – Cracking the telecom orchestrator market puzzle

$4,695.00 – $9,995.00
Select options This product has multiple variants. The options may be chosen on the product page
VNFO

The VNFO – Ripe for Change

$4,500.00 – $6,000.00
Select options This product has multiple variants. The options may be chosen on the product page
CNFs and VNFs in Cellular Telephony RAN: Pre and Post Covid19 Analysis

CNFs and VNFs in Cellular Telephony RAN: Pre and Post Covid19 Analysis

$3,500.00 – $6,000.00
Select options This product has multiple variants. The options may be chosen on the product page

The Insight Research Corp Logo

We’ve seen, chronicled and analyzed the crests and troughs of the telecommunications industry all along the way since 1990. Our shelves house close to 200 market research reports that we’ve published, along with numerous custom consulting assignments.

Quick Links

  • Home
  • About Us
  • Careers
  • Reports
  • Blog
  • Privacy Policy
  • Terms of Use
  • Newsletter
  • Sitemap
  • Press
  • Testimonials
  • Contact Us
  • FAQ

Contact Us

268, CMH Road,
Indiranagar,
Bangalore - 560038,
India

+1 408 757 0054 , +91 988 019 1752

marketing@insight-corp.com

Social Media

  • FB
  • Twitter
  • LinkedIn
  • Youtube
Copyright © 2025 Techgradient., and / or its Affiliates. All Rights Reserved. | See our Privacy Policy.
Powered By AGT INDIA

GET IN TOUCH

"*" indicates required fields

Please let us know what's on your mind. Have a question for us? Ask away.
This field is for validation purposes and should be left unchanged.

Pre-order your copy and avail discounts

"*" indicates required fields

This field is for validation purposes and should be left unchanged.

Download Table of Content

"*" indicates required fields

This field is hidden when viewing the form
This field is hidden when viewing the form
This field is for validation purposes and should be left unchanged.

Download Brochure Sponsored Report

"*" indicates required fields

This field is hidden when viewing the form
This field is hidden when viewing the form
This field is for validation purposes and should be left unchanged.
Select your currency
INR Indian rupee
USD United States (US) dollar

WhatsApp us